Моменты сил действующих на воздушное судно. Силы, действующие на самолет при снижении самолёта. Силы, действующие на самолет при планировании

Самолет - летательный аппарат, который во много раз тяжелее воздуха. Для того чтобы он летал, нужна совокупность нескольких условий. Важно чтобы сочетался правильный угол атаки с множеством различных факторов.

Почему он летает

По сути, полет летательного аппарата является итогом действия нескольких сил на самолет. Силы, действующие на самолет, возникают при перемещении воздушных потоков навстречу крыльям. Они повернуты под определенным углом. Помимо этого, они всегда обладают особой обтекаемой формой. Благодаря этому они и «становятся на воздух».

На процесс влияет высота полета самолета, а разгоняют его двигатели. Сгорая, керосин провоцирует выброс газа, который вырывается с огромной силой. Винтовые двигатели поднимают летательный аппарат вверх.

Об угле

Еще в 19 веке исследователями было доказано, что подходящим углом атаки является показатель в 2-9 градусов. Если же он окажется меньше, то сопротивления будет мало. В то же время расчеты подъемной силы показывают, что показатель будет маленьким.

Если же угол окажется круче, то сопротивление станет большим, и это превратит крылья в паруса.

Один из самых главных критериев в самолете - отношение подъемной силы к сопротивлению. качество, и чем оно больше, тем меньше энергии потребуется самолету при полете.

О подъемной силе

Подъемная сила является составляющей аэродинамической силы, она перпендикулярна вектору движения самолета в потоке и возникает из-за того, что поток обтекает аппарат несимметрично. Формула подъемной силы выглядит так.

Как возникает подъемная сила

В нынешних летательных аппаратах крылья - это статичная конструкция. Она сама не создаст подъемной силы. Поднятие тяжелой машины вверх возможно благодаря постепенному разгону для набора высоты полета самолета. В таком случае крылья, которые ставятся под острым углом к потоку, формируют разное давление. Оно становится меньше над конструкцией и увеличивается под ней.

И благодаря разнице в давлении, по сути, и возникает аэродинамическая сила, набирается высота. Какие показатели представлены в формуле подъемной силы? Используется несимметричный профиль крыла. На данный момент угол атаки не бывает больше 3-5 градусов. И этого хватает для того, чтобы современные летательные аппараты взлетали.

С момента создания первых летательных аппаратов конструкция их была в значительной мере изменена. На данный момент крылья обладают несимметричным профилем, верхний металлический их лист выпуклый.

Нижние листы конструкции ровные. Это сделано для того, чтобы потоки воздуха проходили без особых препятствий. По сути, формула подъемной силы на практике реализуется таким образом: верхние потоки воздуха проходят долгую дорогу благодаря выпуклости крыльев по сравнению с нижними. А воздух за пластиной остается в том же количестве. В итоге верхний воздушный поток продвигается быстрее, и там образуется область с более низким давлением.

Разница в показателях давления над крыльями и под ними вместе с работой двигателей и ведет к набору нужной высоты. При этом важно, чтобы угол атаки был в норме. В противном случае подъемная сила будет падать.

Чем скорость у аппарата больше, тем, согласно формуле подъемной силы, показатель последней больше. Если же скорость сравнялась с массой, летательный аппарат переходит в горизонтальное направление. Скорость создается работой двигателей летательных аппаратов. А если давление над крылом упало, это видно сразу невооруженным глазом.

Если самолет маневрирует внезапно, то над крылом появляется белая струя. Это конденсат водяного пара, который образуется из-за того, что давление падает.

О коэффициенте

Коэффициент подъемной силы является безразмерной величиной. Она напрямую зависит от формы крыльев. Также влияет и угол атаки. Применяют его, рассчитывая подъемную силу, когда известна скорость, плотность воздуха. Зависимость коэффициента от угла атаки отображается наглядно при летных испытаниях.

Об аэродинамических законах

Когда летательный аппарат передвигается, его скорость, другие характеристики движения меняются, как и характеристики воздушных потоков, которые его обтекают. Вместе с тем меняются и спектры обтекания. Это неустановившееся движение.

Чтобы лучше это понять, нужны упрощения. Это в значительной мере упростит вывод, а инженерное значение останется прежним.

Во-первых, рассматривать лучше всего установившееся движение. Имеется в виду, что не будут меняться со временем.

Во-вторых, лучше принять гипотезу неразрывности среды. То есть в расчет не берутся молекулярные движения воздуха. Воздух рассматривается в качестве неразрывной среды с постоянной плотностью.

В-третьих, лучше принять, что воздух не вязок. Фактически его вязкость равняется нулю, а силы внутреннего трения отсутствуют. То есть из спектра обтекания удаляется пограничный слой, не берется в расчет лобовое сопротивление.

Владение главными аэродинамическими законами позволяет выстроить математические модели того, как летательный аппарат обтекается воздушными потоками. Оно же позволяет вычислить показатель основных сил, которые зависят от того, как распределяется давление по самолету.

Как управляют самолетом

Безусловно, чтобы процесс полета был безопасным и комфортным, одних крыльев и двигателя будет мало. Важно управление многотонной машиной. И очень важна точность руления в процессе взлета и посадки.

У пилотов посадка считается контролируемым падением. В ее процессе происходит значительное снижение скорости, и в итоге машина теряет высоту. Важно чтобы скорость была подобрана максимально точно для обеспечения плавности падения. Именно это приводит к тому, чтобы шасси касались полосы мягко.

Управление летательным аппаратом в корне отличается от управления наземным транспортным средством. Штурвал нужен, чтобы отклонять машину вверх и вниз, создавать крен. «На себя» означает набирать высоту, а «от себя» означает пикировать. Чтобы менять курс, нужно нажимать на педали, а затем с помощью штурвала корректировать наклон. Этот маневр на языке летчиков называется «разворотом» либо «виражом».

Чтобы машина могла разворачиваться, стабилизировать полет, в хвосте аппарата присутствует вертикальный киль. Над ним расположены «крылья», которые являются горизонтальными стабилизаторами. Именно благодаря им самолет не снижается и не набирает высоту самопроизвольно.

На стабилизаторы помещают рули высоты. Чтобы управление двигателем было возможным, у кресел пилотов поместили рычаги. Когда самолет взлетает, их переводят вперед. Взлетный режим означает максимальную тягу. Он нужен для того, чтобы аппарат набрал взлетную скорость.

Если тяжелая машина садится, рычаги отводятся назад. Это является режимом минимальной тяги.

Можно наблюдать, как перед тем как садиться, задние части больших крыльев опускаются вниз. Они называются закрылками и выполняют ряд задач. Когда самолет снижается, выпущенные закрылки притормаживают машину. Это не позволяет ей разгоняться.

Если самолет садится, а скорость не слишком большая, закрылки выполняют задачу создания дополнительной подъемной силы. Тогда высота теряется достаточно плавно. Когда машина взлетает, закрылки способствуют тому, чтобы самолет держался в воздухе.

Заключение

Таким образом, современные самолеты являются настоящими воздушными кораблями. Они автоматизированы, надежны. Их траектории движения, весь полет поддается достаточно подробному расчету.

Соглашение об использовании материалов сайта

Просим использовать работы, опубликованные на , исключительно в личных целях. Публикация материалов на других сайтах запрещена.
Данная работа (и все другие) доступна для скачивания совершенно бесплатно. Мысленно можете поблагодарить ее автора и коллектив сайта.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

хорошую работу на сайт">

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Подобные документы

    Математическое описание продольного движения самолета, уравнения силы и моментов. Модель привода стабилизатора и датчика положения штурвала. Разработка алгоритма ручного управления продольным движением самолета, рекомендации к выбору желаемых значений.

    курсовая работа , добавлен 06.07.2009

    Конструктивные и аэродинамические особенности самолета. Аэродинамические силы профиля крыла самолета Ту-154. Влияние полетной массы на летные характеристики. Порядок выполнения взлета и снижения самолета. Определение моментов от газодинамических рулей.

    курсовая работа , добавлен 01.12.2013

    Разработка системы автоматического управления углом тангажа легкого самолета, предназначенного для проведения аэрофотосъемки в рамках геологических исследований. Анализ модели самолета. Основные вероятностные характеристики шумов в управляемом объекте.

    дипломная работа , добавлен 19.02.2012

    Устойчивость, управляемость самолета. Принцип действия рулей. Центровка самолета, фокус его крыла. Понятие аэродинамической компенсации. Особенности поперечной устойчивости и управляемости на больших скоростях полета. Боковая устойчивость и управляемость.

    лекция , добавлен 23.09.2013

    Геометрические и аэродинамические характеристики самолета. Летные характеристики самолета на различных этапах полета. Особенности устойчивости и управляемости самолета. Прочность самолета. Особенности полета в неспокойном воздухе и в условиях обледенения.

    книга , добавлен 25.02.2010

    Общие понятия о равновесии, балансировке, устойчивости и управляемости летательного аппарата. Уравнения продольного возмущенного движения. Продольная статическая устойчивость самолета. Анализ сводного возмущенного движения летательного аппарата.

    курсовая работа , добавлен 29.10.2013

    Определение взлетной массы самолета в нулевом приближении. Выбор конструктивно-силовой схемы самолета и шасси. Определение изгибающего момента, действующего в крыле. Проектирование силовой установки самолета. Электродистанционная система управления.

    дипломная работа , добавлен 01.04.2012

Механическое воздействие набегающего потока на самолет сводится к нагрузкам, непрерывно распределенным по его поверхности. Для удобства изучения эти распределенные нагрузки приводят к результирующей силе, приложенной в центре масс самолета, которая называется аэродинамической силой и обозначается (см. рис. 22), а также моменту вокруг центра масс, который называется аэродинамическим моментом и обозначается .

Рис. 22. Аэродинамическая сила и аэродинамический момент, действующие на самолет при его обтекании набегающим потоком

Теоретические и экспериментальные исследования показали, что величина аэродинамической силы прямопропорциональна скоростному напору набегающего потока и характерной площади обтекаемого тела S :

, (32)

где C R – коэффициент пропорциональности, который носит название коэффициента аэродинамической силы.

Аэродинамический момент также прямопропорционален скоростному напору , характерной площади S и характерному линейному размеру обтекаемого тела l :

, (33)

где m – коэффициент пропорциональности, который называется коэффициентом аэродинамического момента.

За характерную площадь и характерный размер берутся соответственно площади и размеры тех частей самолета, которые вносят основную долю в создание рассчитываемой силы или момента.

Разложим аэродинамическую силу на составляющие по осям связанной и скоростной систем координат. В связанной системе координат эти проекции обозначаются и называются следующим образом:

– аэродинамическая продольная сила;

– аэродинамическая нормальная сила;

– аэродинамическая поперечная сила.

В скоростной системе координат:

– сила лобового сопротивления;

– аэродинамическая подъемная сила;

– аэродинамическая боковая сила.

На рис. 23 показаны проекции аэродинамической силы на оси связанной и скоростной систем координат при отсутствии скольжения.

Рис. 23. Разложение аэродинамической силы по осям связанной и скоростной систем координат при b = 0

В дальнейшем мы будем иметь дело в основном с проекциями аэродинамической силы на оси скоростной системы координат. Воспользовавшись формулой (32), запишем выражения для этих проекций. При этом в качестве характерной будем брать характерную площадь того элемента, который играет основную роль в создании данной силы.

Так, сила лобового сопротивления самолета складывается из сил лобового сопротивления фюзеляжа, крыла, оперения и других частей самолета. За характерную площадь можно принять площадь миделевого сечения фюзеляжа S м.ф:

, (34)

где C xa – коэффициент лобового сопротивления.

В создании подъемной силы самолета основную роль играет крыло, поэтому в качестве характерной берется площадь крыла S кр:

, (35)

где C ya – коэффициент подъемной силы.

Аэродинамическая боковая сила в основном определяется вертикальным оперением и фюзеляжем, значительно меньший вклад в создание этой силы вносят крыло, горизонтальное оперение и другие части самолета. Поскольку вертикальное оперение является основным элементом при создании боковой силы (оно для этого предназначено), то его площадь S в.о и принимают за характерную:

, (36)

где C za – коэффициент боковой силы.

Так как аэродинамические моменты, действующие на самолет, рассчитываются в основном относительно связанных осей координат, найдем проекции момента на оси связанной системы координат (см. рис. 24).

Рис. 24. Составляющие аэродинамического момента

в связанной системе координат

X называется моментом крена. Он определяется в основном силами, действующими на крыло самолета и в меньшей степени – на вертикальное и горизонтальное оперения:

, (37)

где m x – коэффициент момента крена.

Аэродинамический момент относительно оси 0Y называется моментом рыскания. Он создается силами, действующими в основном на вертикальное оперение и фюзеляж. Этот момент вычисляется по следующей формуле:

, (38)

где m y – коэффициент момента рыскания;

L в.о – плечо вертикального оперения (расстояние от точки приложения аэродинамической силы, возникающей на вертикальном оперении, до центра масс самолета).

Аэродинамический момент относительно оси 0Z называется моментом тангажа. Он создается силами, действующими на крыло, горизонтальное оперение и фюзеляж. Вертикальное оперение практически не участвует в создании момента тангажа. Момент тангажа вычисляют по формуле.

СХЕМА МОМЕНТОВ ДЕЙСТВУЮЩИХ НА ЛЕТАТЕЛЬНЫЙ АППАРАТ В СВЯЗАННОЙ СИСТЕМЕ КООРДИНАТ.

Моменты, действующие на самолет. По происхожде­нию и характеру воздействия на самолет моменты под­разделяются па рулевые , статические и вращательные . Рулевые моменты возникают при отклонении управляю­щих поверхностен самолета руля высоты (стабилизато­ра), элеронов, руля направления. К рулевым моментам относятся также моменты, возникающие при выпуске закрылков, тормозных щитков, шасси, тормозных пара­шютов и т. д. Статические моменты обусловлены изме­нением угла атаки или скольжения . Статический момент является стабилизирующим, если он стремится устранить вызвавшее его изменение угла или . Если момент стремится увеличить угол или , то такой мо­мент называется дестабилизирующим. Вращательные моменты направлены против вращения и являются демп­фирующими моментами. При вращении самолета во­круг одной оси могут возникать моменты относительно других осей. Например, при вращении самолета (во­круг оси ) возникает момент относительно оси . Такие моменты называются перекрестными.

Все силы, приложенные к самолету, можно перенести в центр тяжести О (рис. 8). Если точка О является на­чалом прямоугольной системы координат , то оси координатной системы могут быть направлены по про­дольной оси самолета - ось , по вертикальной оси - ось , по поперечной оси - ось . Моменты, действую­щие на самолет, можно представить тремя составляю­щими - , которые направлены по соответст­вующим координатным осям.

Рис. 8. Силы и моменты, действующие на самолет в полете

Под действием сил самолет совершает поступатель­ные движения по направлениям осей системы координат с линейными ускорениями . Воздействие моментов создает вращательные движения относительно осей системы координат с угловыми скоростями Таким образом, самолет обладает шестью степенями свободы: тремя степенями поступательного движения и тремя - вращательного.